Name_____

AA7-3 Finding complex roots

Check for understanding:

Which will have complex roots:

Practice: B-Level

Find the roots for each equation below using the Quadratic Formula then write in factored form.

	() 3 2 2 5 1 1 1 (10)
5) $y = x^3 - 3x^2 + 3x - 2$ has a real root at (2,0)	6) $x^3 + 3x^2 + x - 5$ has a real root at (1,0)
-2	
×	
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-	8) Rewrite in standard form:
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (- 4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) $y = 2x^3 + x^2 - 19x + 36$ has a real root at (-4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) y = 2x ³ + x ² - 19x + 36 has a real root at (- 4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) y = 2x ³ + x ² - 19x + 36 has a real root at (- 4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) y = 2x ³ + x ² - 19x + 36 has a real root at (- 4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) y = 2x ³ + x ² - 19x + 36 has a real root at (- 4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) y = 2x ³ + x ² - 19x + 36 has a real root at (- 4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) y = 2x ³ + x ² - 19x + 36 has a real root at (- 4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) y = 2x ³ + x ² - 19x + 36 has a real root at (- 4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))
7) y = 2x ³ + x ² - 19x + 36 has a real root at (- 4,0)	8) Rewrite in standard form: y = (x+4)(x-(2 + 3i)(x-(2-3i))

Practice: B-Level Rewrite in factored form;